
J .  Pluid Meeh. (1970), vol. 42, part 1, pp. 97-109 

Printed in Great Britain 
97 

An energy principle for dissipative fluids 
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An energy principle is presented which gives necessary and sufficient conditions 
for exponential stability for a large class of dissipative systems. The maximal 
growth rate Q of an unstable system is shown to be the least upper bound of a 
certain functional, giving a variational expression for Q. These results are used 
to discuss the gravitational stability of incompressible viscous fluids and resistive 
magnetofluids in arbitrary geometries. 

1. Introduction 
The utility of the energy principle in determining the stability of equilibria 

of conservative dynamical systems is well known (Chandrasekhar 1961). In this 
paper we extend the energy principle to a large class of dissipative systems, and 
in the process obtain a ‘maximum) principle for the maximal growth rate of an 
unstable system. The latter permits the use of a variational or Rayleigh-Ritz 
technique to calculate the maximal growth rate. 

The paper begins with a discussion of two stability problems which are used 
to motivate as well as illustrate the theory, viz. the gravitational stability of a 
viscous incompressible fluid ($ 2) and the gravitational stability of a viscous, 
resistive, incompressible magnetofluid ( $  3). The equilibria considered are quite 
general. The necessary notation and equations are developed and the equations 
put into canonical form (4.1) in $ 3  2 and 3. The energy principle and the maximum 
principle are derived in $4, and are then applied to the original problems in $ 5. 
While the necessary and sufficient conditions for exponential stability for the 
first of these problems is physically apparent (Vpo. VQ0 6 0 where p o  and Q0 are, 
respectively, the unperturbed mass density and gravitational potential), the 
situation is somewhat more complex for the conducting fluid, and depends also 
upon conductivity, magnetic field, and geometry. Variational expressions for the 
maximal growth rates are given for both problems and permit the study of this 
quantity as a function of viscosity, geometry, conductivity, and magnetic field. 
Details will be found in $5. 

It must be emphasized that the extended energy principle and the maximum 
principle apply to any system that can be put into the canonical form of (4.1)) 
and are by no means limited in application to the specific examples treated in this 
paper. Once the proper form is achieved, necessary and sufficient conditions for 
exponential stability follow immediately, and the calculation of the maximal 
growth rate (a function of the parameters of the unstable system) becomes a 
straightforward variational problem. Thus the successful manipulation of a 
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problem into the form of (4.1) is well rewarded. However, the proper choice of 
variables is not always obvious. The theory has proved extremely successful in 
treating the resistive magnetohydrodynamic sheet pinch and the electrohydro- 
dynamic Rayleigh-Taylor bulk instability, providing growth rates as well as 
necessary and sufficient conditions for stability where only partial results for 
special limiting cases had previously existed, some of which were shown to be 
incorrect (Bnrston 1969a, 1970; Turnbull & Melcher 1969). 

The derivation of the extended energy principle used herein has the advantage 
of being free from any assumptions of completeness imposed on the eigenfunc- 
tions of the linearized perturbation equations; in fact, our results are valid for 
systems with no proper eigenfunctions. This is important in certain applications 
to hydrodynamic and hydromagnetic systems, where the set of proper eigen- 
functions is not complete. We make the much weaker assumption that the time- 
dependent perturbation equations admit smooth solutions for all sufficiently 
smooth initial data (we do not require the existence of any solutions of the form 
f(x)eWt), which is a rather obvious requirement to be made on any well-posed 
physical system. 

2. Equations for a viscous fluid 

S, satisfying the following system of equations in U :  
We consider a viscous incompressible fluid occupying a volume U with surface 

v . v  = 0, (2.1) 

aP - + v . v p  at = 0, 

p -~ + (v .  P)v = - V P  -pV@o + V2(vV) - VV2v- (V x V) x VV. (2.3) (Z I 
The quantity p(x, t )  denotes the mass density, V(X, t )  the fluid velocity, P(x, t )  
the scalar pressure, Y ( X ,  t )  the viscosity, and ot0(x) the (external) gravitational 
potential. (We neglect the self-gravitational field.) 

The equilibrium values of the fluid variables, denoted by a 0 subscript, are 
as follows: vo(x) E 0, v,(x) is an arbitrary prescribed positive function, while 
P,(x), p,(x), and Oo(x) are related by 

VP, = -pow@,, (2.4) 

but po and 0, are otherwise arbitrary (p, will be assumed strictly positive). 

the displacement vector 
We linearize (2.1)-(2.3) about the equilibrium and obtain, after introducing 

ax, t )  = 1; v,(x, 7) dT + Edx, O), (2.5) 

the following set of equations (the linearized variables are denoted by a subscript 
1 ; note that 5 represents the linearized displacement) : 

P1 = PI(% 0) - VP, 4 [5 - 4(x, O)l ,  (2.6) 
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where a5 L ---v2 vo- - v v o x  v x -  +(V2v)- 
O at ( 2) ( ::) 0 at (2.10) 

and Go5 -V@o(V~o.g) .  (2.11) 

The appropriate boundary condition is that g(x, t )  vanish on S. We assume, of 
course, that all quantities are sufficiently smooth so that the indicated operations 
are well defined; in particular, we take (Do, po and vo to be twice continuously 
differentiable functions and consider the class C of solutions E(x, t )  of (2.9) such 
that g(x, t )  and (ag(x, t)}/at are both in D for each fixed t 2 0, where D is defined 
to be the set of all functions f (x) with the properties that V . f = 0 in U ,  f = 0 on S ,  
and f is twice continuously differentiable on U .  

It is not difficult to show that the operators Lo and Go defined by (2.10) and 
(2.11) are self-adjoint on D with respect to the inner product, 

(2.12) 

(f* denotes the complex conjugate off) ,  and we have, using standard Cartesian 
tensor notation, 

so that Lo is positive. From (2.4), 

0 = v x = vpo x woo, 
which implies the existence of a scalar function yo(x) such that 

Vp, = y0(x)V@,, VQo $. 0. (2.13) 

Therefore (5 ,GoQ = - j VPO.V@OIfllIl2d3~? (2.14) 

where E,, = (g.V@o)/\V@o\. 
We assume that Vp,. VQ0 is bounded on U .  For future reference, we note that 

(2.15) 

U 

holds for each solution 5 in C, since 
r r r 

3. Equations for a viscous resistive MHD fluid 

set of equations in U :  
Let the fluid occupy the volume U with surface S,  and satisfy the following 

v.v = 0, (3.1) 

at * + v . v p  = 0, ( 3 4  
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p - + (v.V)V = - V P - ~ V @ ~ + , U ~ L , ~ ( V  x B) x B +V2(vv) -vV'Y- (V x V) x VV, 

(3.3) 
(3.4) 

(3.5) 

The equations are written in MKS units; po is the permeability of free space. The 
quantity B(x, t )  denotes the magnetic field, q(x, t )  the resistivity, and the re- 
maining variables are as defined in 92. 

For the equilibrium, we take vo(x) = 0, V x B,(x) = 0 within U ,  while po(x), 
Po(x) and @,(x) must satisfy (2.4). We assume that po(x), v0(x), and qo(x) are 
positive in U ,  that qo vanishes identically on all parts of X not at  infinity, and 
that po and vo are positive on X. 

[; i 
aB/at = -,uo'V x (7V x B) + V  x (V x B), 

V .  B(x, 0) = 0. 

The linearization of (3.1)-(3.4) gives 

v.v, = 0, (3.6) 

(3.7) 

( 3 4  

aP1 --+v1.Vpo = 0, 

POP0 at = - P o ~ Y , - P o P l ~ ~ o - P o ~ o ~ , - ~ , ~ , ,  

at 
av1 

where L ,B=Box[VxB] ,  

L2B 3 p;lV x [qoV x B], 

Llfv=-Vx[B,xv], 

(3.10) 

(3.11) 

(3.12) 

and Lo is given by (2.10). Setting 

B,(x, T) d~ + R(x, 0), (3.13) 

and introducing the displacement vector 5 of (2.5), (3.7)-(3.9) yield (2.6) and 

where E(x, t )  and F(x) denote the six-vectors 

(3.14) 

(3.15) 

and (3.18) 
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We take S to be a perfectly conducting rigid surface, and require that&(x, t )  
(= c(x, t ) )  vanish on S, g2(x, t )  ( = R(x, t ) )  vanish on all parts of S at infinity, 
while 5,. n = 0 on the remainder of S (n denotes the unit normal on S ) .  We assume 
that all quantities are sufficiently smooth so that the indicated operations are 
well defined; in particular, we take all O-order quantities to be three times con- 
tinuously differentiable, and consider the class C of solutions of (3.14) such that 
s(x, t )  and aE(x, t)/at are both in D for each fixed t 0, where D is defined to be 
the set of all six-vectors 

with the following properties: V.f,(x) = 0 in U (i = 1,2), f, vanishes on S ,  f, 
vanishes on all parts ofS at  infinity andf,. n = 0 on the remainder of S ,  Lff, - L2f, 
vanishes on all parts of S at infinity and (L1+ f, - L,f,) . n = 0 on the remainder of 
S, f, is three times continuously differentiable on U ,  and f, is four times con- 
tinuously differentiable on U .  Under these circumstances it is easy to show that 
(3.14) is equivalent to (3.6)-(3.9), that n, K ,  and H are self-adjoint on D with 
respect to the inner product ( E ,  c) defined by 

(3.19) 

(3.22) 

4. Stability theorems 
The preceding problems have been reduced to special cases of the equation 

Pt+ jc[ + H&t) + 6 = r ( t )  (t  2 0) (4.1) 

where r ,  6, [, 5, and I$ are elements of an inner product space E for each fixed 
t > 0, and p i s  a given function oft; g(t) and ( ( t )  are, for each fixed t > 0, elements 
of a subspace D of E on which the operators K and H are self adjoint, K 2 0 and 
H is bounded below; P is a non-negative self-adjoint operator with domain 
containing D ;  and F,, defined only for solutions t of (4.1)) has the property that 
(6, FE) = 0 = ( f ,  li;) for every such 6. 

We now prove several theorems concerning the stability of solutions of (4.1), 
assuming the properties stated in the preceding paragraph. These theorems are 
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straightforward modifications of results previously obtained by the author for 
(4.1) with Pc absent (Barston 1969a, b ) ,  and give necessary and sufficient con- 
ditions for exponential'stability as well as maximal growth rates for the problems 
considered in §$2 and 3. 

Stability of the solutions c(t) of (4.1) will be discussed in terms of / / [ / I  = (6, [)*. 
We say that a real or complex-valued function f ( t )  defined for t 3 0 is expo- 
nentially stable if for every E > 0, there exists a constant He such that I f ( t )  1 < Heeat 
for t 2 0. A function <(t) with values in E is said to be exponentially stable if 
]I c( t ) / ]  is exponentially stable. 

The following theorem gives sufficient conditions for stability: 
Theorem 4.1. Let H be non-negative and c(t) be any solution of (4.1). 
(i) If l\r(t)/l < M ,  Il+(t)ll < N for t 3 0, where M and N are constants, and if 

then there exist positive constants A ,  B, C ,  A ,  and G such that 

IIt(t)ll < A t + B  ( t  2 01, 

(l, PS) < Ct2 + At + G ( t  3 0). 

In particular, if N = 0 (i.e. + z 0), then IIc(t)/l and ((,Pg) are bounded for t 3 0. 
(ii) If r ( t )  and +(t) are exponentially stable and if 

then 6 and (g, Pg) are exponentially stable. 

Proof 
(iii) If r =_ 0, then (g7 Pg) is bounded for t 2 0. 

a 
(i) 2; {(g, + (!$, H t ) )  = (Pf+ H t ,  0 + (t, Pf+ 

= ( r -  4- K& 5) + (t, r -4- Kc) = 2 Re (Y, <) - 2({, K i )  

< 2Re(r,g) = -2Re(r,[)-2Re(i,[). 
a 
at 

Integrating from 0 to t and using the Schwarz inequality, we obtain 

so that 

Set 

(4.4) 
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Taking the square root of both sides of the above inequality, we obtain 

I/ 5V)ll = A t )  < (A,  + BlPP + Ma-,, (4.6) 
d 
- {2B;l(A1 + Blp)*} = P(A, + B,p)-* < 1 + M6-1A,*. 
at 

so that 

Integrating from 0 to t yields 

( A ,  + B,p)& < $B,( 1 + M8-I AT&) t + A t ,  

and (4.2) follows at once from (4.6). From (4.2) and (4.5) we find 

( f , P l )  6 p+BM(At+B)+2N ( A u + B ) d u ,  so” 
which implies (4.3). 

(ii) Let E > 0, and set ( ( t )  = eetc(t). Then c(t) satisfies 

PC+K,C+H,<+P, =f(t) = re-Et (t 2 0), (4.7) 

(Pic, 5)  = (I$., E )  e-zet 5 o 
(PC, [) = (Ft, EJ e-2d - e(Ft, 5) e-ztt = o 

(t  2 0 1 ,  
(t  2 0). 

l l f l l  = j l i -~r-f[ le-~~ < (\\ill +s)[r)j)e-Et < &+EM, 
so that by (i), /Ic(t)ll 4 At+B for t 2 0. Therefore, ilc(t)/l = I]c/leat 6 (At+B)ec t  
for t 2 0, which implies that 6 is exponentially stable. Since r ,  i, and 5 are ex- 
ponentially stable, given any B > 0 there exist constants M,, N,, and such that 
11r11 < MEect, l l+ l l  < N,eet, and 11&11 < @,eet for t 2 0. It follows from (4.5) that 

Now / f /  = jlrlle-et 6 M,eEte--Et = M, and 

(g, Pl) < P+2ME&&e2Et+2NEi@, e2EUdu s,” 
< [/3 + 2M, i@, + e-lNC e2ct 

which proves the exponential stability of ([, P [ ) .  
(iii) This follows from (4.5) since llrjl = IltlI = 0. 
Now consider the case where H is not non-negative on D.  We introduce the 

following definitions : 

(4.10) 

(We assume that P > 0 on D, which holds for the problems of $3 2 and 3.) 

Q = sup&,, 
B 

K ,  = 2wP+K, H, = w2P+wK+H. 
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Note that !2 > 0, since Qq > 0 for all 7 in B.  Let 0 < F < Q. Then there exists 4 
in D such that !2 - e < Q4 < Q. Now (q i ,  Hwqi) is a strictly increasing function of 
to on [0, 00) which vanishes for w = Q4, so that ($,H,-ey5) < 0. Let [ ( t )  be a solu- 
tion of (4.1), with r = 0 satisfying the initial data to = Yr, and f ,  = (a - s )  4 + $) 
where $issomeelement of the nullspace of P (i.e. Py+ = 0). Then c( t )  E [ ( t )  e-(Q-E)t 
satisfies the equation, 

P~+K,-,~+H,-,c+F~ = 0, (4.12) 

where Fc = FE:rdLL-f)t, so that 

a .  {(c? PO + (c>H,-,c)] = - 2(<> &-c 0 6 0. (4.13) 

Therefore 

A//Cl/2 tj.,PP, + ( L f L C )  6 ( t o ,  PCO) + (<O:O,HQ--ECO) = (4,H,-,9), 
which implies IlCIl > [($,H,-,q5)/A]+. Hence 

lIt(t)ll = I1c(t)l/e'n-")l 3 [(Yr,,H,-,S)/AI: e(o-E)t, 

andthisholdsfor all sufficiently small positive e, i.e. the exponential growth rate Q 
can be approached arbitrarily closely by solutions of the homogeneous equation. 
The general solution of (4.1) is the sum of a particular integral plus a solution of 
the homogeneous equation; it follows that the inhomogeneous equation (4.1) 
admits solutions with growth rates 2 8 - s  for every E > 0. (We say that [ ( t )  
has a growth rate 3 w if there exists a sequence {tn}~=l with t ,  -+ 03 as n + co 
such that ll[(t,)ll > Mewtn for some constant M > 0 and all n. If there is a constant 
N such that ll[(t)\l 6 Newt for all t 2 0, then ( ( t )  is said to have a growth rate < w . )  

We now show that if the functions r ( t )  e-,t and i ( t )  ecnt are both exponentially 
stable and if 

then every solution of (4.1) has a growth rate 6 !2 + E for all e > 0, i.e. the growth 
rate s1 is never exceeded and is therefore the maximal growth rate of the system. 
(The preceding paragraph shows that solutions with growth rates arbitrarily 
close to Q always exist, but no implication is made that the growth rate !2 is 
actually attained; indeed, in general it is not attained.) Let c(t) be any solution 
of (4.1), let e > 0, and set <(t) = ( ( t )  e-(n+e)t. Then <(t) satisfies the equation, 

P<+K,+,[+H,+,<+~ = f ( t )  = re-(Q+c)t, 

where .Fc = Fte-(R+e)t. Since l l f l l  and l i f l l  are both bounded, it follows immediately 
from part (i) of theorem 4.1 that a constant M exists such that /l{(t)!l < Meet 
for all t 3 0, and so 

\l[(t)ll = I I<(t)l le(n+c)t < Me(n+2E)t, 

which was to be proved. We summarize our results in the following theorem: 
Theorem 4.2. Let 
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(i) Then for each e > 0, there is a solution of (4.1) with a growth rate > Q -  e. 
(ii) Suppose, furthermore, that recnt and .iecnt are exponentially stable, and let 

Then Q is the maximal growth rate of the system. A sufficient condition that ( 

is that 

1 sinceH, >OonDandH,+, = ~ [ E P + K ] + ~ Q E P + H ,  t.[eP+K]onDfore > 0 .  

(i) The viscousJEuid 5. Conclusions 

For this problem, P, K ,  and H are respectively equal to po, Lo, and Go (cf. (2.9) 
and (4.1)). We shall suppose that S EE infpo(x) > 0. Then if Vp0.V@', 6 0 on U 

Y 
the exponential stability of 5 and V1 ( = 5) follows immediately from theorem 4.1 
(i), since Go 2 0 by (2.14) and inf (5,Ha<)/(', 5 )  > a2S > 0 for a > 0. A stronger 

result holds for the class of perturbations with initial data satisfying 
D 

Pl(X,  0) = - VP, * 5(x, 0); 

here we have r ( t )  E 0, and it follows from theorem 4.1 (iii) that ~ ~ V l ( x , t ) ~ ~  is 
bounded. On the other hand, if Vp0.V@,, > 0 at  some point x in U ,  we may 
construct a 5 in D which makes the right-hand side of (2.14) negative, and it 
followsfrom theorem 4.2 that the system is exponentially unstable with maximal 

Thus one-half the expression in curly brackets, evaluated for any 5 in D ,  fur- 
nishes a lower bound for Q. A simple upper bound on Q can be obtained by noting 
that if E, is in B, the expression in curly brackets does not exceed 

and siii ce 
r 

(5 .2 )  
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where E,, = ( ~ . V @ o ) / ~ V @ o ~ ,  we have 

(5.3) 

For an exponentially unstable inviscid (Lo = 0) fluid, is actually equal to 
the extreme right-hand side of (5.3).5f This follows from the fact that for any 
6 > 0 and any xo in the interior of U ,  we can construct a g(x)  in D which vanishes 
outside the sphere I x - xol < E and satisfies 

so that it is possible to  choose EJx) in D so as to make - (4, Go4)/(4,p0Q as close 
as we please to sup (Vpo. V@o/po). Thus unless 

U 

VPO.V@O = - sup VPO*V@O 
Po u Po 

on some open sphere in U ,  Q cannot be an eigenvalue in the inviscid case, i.e. a 
smooth solution of the form 4(x)eat to the homogeneous equation (2.9) with 
Lo = 0 cannot exist. 

Finally, we observe that if we write vo(x) = Pg(x), where 3 = sup vo(x), then 
U 

(5.4) 

and it follows from (5.1) and the preceding paragraph that a( P) is a non-increasing 
(strictly decreasing if inf vo(x)  > 0) continuous function of P for P 3 0. 

U 

(ii) The viscous resistive MHDJluid 
In this case stability is determined by the quadratic form (cf. (3.21) and (2.14)) 

(E,HE) = -p0/ Vpo.V@oJf;,,)2d3x+ JL&g-L,R)2d31e. 
U 1u 

(5.5) 

IfVp,.V@., 6 Oon U ,  then H 2 OonDand (2.5),  (3.9), (3.13), (3.21), and (4.5) 
give 

where S = infp, and C(X) = B , ( x , O ) + L , R ( x , O ) - L ~ ~ ( x ,  0). It can be shown 

that (5.6) implies that if S > 0, 
U 

su IV,(x,t)12d3x and 

For uo 0 the set D must be enlarged to require only that f .n = 0 on all parts of S 
not at infinity (n is the unit normal to S )  rather than f = 0 thereon. 
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are both bounded by polynomials of the fourth degree in t ,  so that the system 
is exponentially stable. Indeed, if we restrict our attention to perturbations 
whose initial data pl(x, 0) and B,(x, 0) are given by 

(5.7) 
Pl(X, 0) = - VPO. F(X, 01, 

B,(x,O) = -wE,(x, 0) -L,R(x, 01, 
for some 

then C = 0 and F = 0, 

and it follows immediately from (5.6) that both 
c r 

J IV,(X,~)~~~~X and J / B , ( X , ~ ) ] ~ ~ ~ X  
u G- 

are bounded uniformly in time (provided 6 > 0). 
On the other hand, if Vp,.  V@, > 0 at some interior point x, of U and if 7, 

is strictly positive in U ,  then it is possible (with reasonable assumptions on q0, 
Bo, and U )  to construct a 

in D for which ( E ,  HE) < 0. Indeed, in the particular circumstance that a sphere 
S,(x,) of radius E with centre at  x, exists within which B, = B,e, = constant 
and 7, is independent of z (without loss of generality we may also assume that 
Vp,  .V@, > 0 therein) we may construct such a by simply setting 

R = PoBo(aQ/az) 

and E, = V x (7,V x Q ) ,  where Q = V x W and W is infinitely often differentiable 
and vanishes identically outside X,(x,). Then 4 and R vanish outside S,(x,), 
0.5 = V.R = 0, 

L t E = B  - = V X  7 V X  B -- = , U ~ ~ V X ( ~ ~ V X R ) = L ~ R ,  
O aE, az ( O [ 0 2 1 )  

and thus if W is chosen so that c,, = [V x (yoV x Q)]  .V@,/IV@,I + 0 at x,, (5.5) 
implies that (E,Hg) < 0. It follows from theorem 4.2 (i) that the system is 
exponentially unstable and that growth rates arbitrarily close to Q can be 
achieved, where !2 is given by 

Thus the necessary and sufficient condition for the exponential stability of 
a resistive (7, > 0 in U )  fluid is that Vp, . V@, be everywhere non-positive in U .  
This result differs strikingly with the situation for a perfectly conducting fluid; 
there it is well known, at  least for simple geometries, that gravitational in- 
stabilities can be stabilized by sufficiently strong magnetic fields B,. Theorem 4.1 
permits the following generalization to arbitrary geometries. 

Theorem. Let the region U be filled with a viscous, incompressible, perfectly 
conducting fluid satisfying (3.1)-(3.5) (with 7 = 0). Let the equilibrium quan- 
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titiesp,, a,, and Po satisfy (2.4), V, E 0, infp, > 0, v, > 0 on U and its boundary 

8, B, = Boe, = constant, and B, > 0. We suppose that S is a perfectly con- 
ducting rigid surface, and require that the perturbed quantities V,(x,t) and 
B,(x, t )  satisfy the boundary conditions V, = 0 on X, B, = 0 on all parts of X 
at infinity, and B, .n = 0 on the remainder of S. Finally, let A < co be the 
maximum length of U in the direction e,. Then, if 

U 

Bin2 > supvp,.v@,, icz u 
the equilibrium is stable, i.e. 

1, (Vl(x,t)l2d3x and IB,(x,t)I2d3x 
/tJ 

are both uniformly bounded for t 2 0. 
Proof. The perturbed quantities satisfy the equations 

a25 ag 
O at 

p o s - + L  -+He+VP, = r, (5.9) 

and B,(x, t )  = Lt 5 + B,(x, 0) - L? q x ,  O),  (5.10) 

where r = - [pl(x, 0) + Vp,. S(x, 0)l V@, +,uolL,[L? 5(x, 0) - B,(x, O)], 

H = Go + L, Ll+pu,l, 

and the remaining quantities are as defined previously. The quantities and 
aelat are required, for each fixed t B 0, to be in D, the set of all twice continuously 
differentiable functions f(x) on U satisfying V . f  = 0 and the boundary con- 
ditions imposed on V, in the hypothesis. The operator II is self-adjoint on D, 
and we show that inf (g,  HE)/(& 5) > 0. Now 

D 

(E, H5)  = (5, GOE) +ruo111~,+el12 

and 

since 

Therefore 

If sup Vp,.  V@, < 0, the result is immediate; if sup Vp,. V@, > 0, then we have 
U U 



An energy principle for dissipative jluids 109 

and again we conclude that inf (5, H g ) / ( g ,  E) > 0. It follows at  once from theorem 
4.1 (i) that li511 and D 

are bounded for all t 2 0; (4.5) then implies the boundedness of (g, Be) for t > 0, 
from which we infer that I[ L1+ and therefore 11 BII( are also bounded in t for all 
t > 0. 
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